Infrared Sources
Success Story: MERTIS to Mercury

The BepiColombo Mission is a joint project between the European Space Agency (ESA) and Japan Aerospace Exploration Agency (JAXA). Axetris Infrared Sources are being used in the MIR spectrometer MERTIS that is on board the Mercury orbiter and was developed by German Aerospace Center (DLR) and University of Muenster.

The BepiColombo Mission

Mercury is the smallest and least explored planet in our solar system. Studying Mercury’s surface in order to understand its formation history is a major goal of the mission. The Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) will be instrumental in mapping surface mineralogy, analyzing surface composition, and studying thermal effects on Mercury’s surface.

Studying Spectra in the 7 – 14 µm Range

The IR spectrometer will operate in the 7-14 µm wavelength range for detecting elemental signatures of minerals such as feldspars, elemental sulfur, and other rock-forming minerals abundant on Mercury. The spectrometer is based on sequential emission measurements. A stable emission from a reference blackbody source (held at 700K / 427°C) is a prerequisite to attain the required spectral resolution.

Axetris MEMS-based Infrared Sources as black body emitters

The electrically modulated Infrared Sources (EMIRS200) from Axetris were chosen due to their black body emission characteristics. Long lifetime and emission stability are key strengths of the MEMS-based design.

The unique design of EMIRS200 and EMIRS50 is based on a resistive heating element integrated onto a thin dielectric membrane which is suspended on a micro-machined silicon structure. The products are available in several package types from classical transistor outline TO’s to ceramic surface mount devices including reflectors and broadband window options.

Key Facts BepiColombo Mission / MERTIS

- Launched on October 10th, 2018
- Approximate 7 years flight time to Mercury
- Launch Mass 4100 kg
- Temperatures endured up to 350°C
- Operational Lifetime > 1 year after reaching final orbit
- Mercury Planetary Orbiter (MPO) will carry 11 instruments, one of which is MERTIS

DLR Institute of Planetary Research: https://www.dlr.de/pf/desktopdefault.aspx/tabid-178/327_read-37536/
University of Muenster: https://www.uni-muenster.de/Planetology/ifp/research/geologischeplanetologie/MERTIS.htm

Detailed information about the project and MERTIS can be found on ESA’s website: http://www.cosmos.esa.int/web/bepicolombo/mertis
Interactive journey: https://www.cosmos.esa.int/web/bepicolombo
Launch: https://www.esa.int/Our_Activities/Space_Science

Axetris EMIRS200 black body IR Source built into MERTIS thermal infrared spectrometer
Infrared Source aboard BepiColombo to explore Mercury
Axetris Infrared Sources for Gas Detection and Monitoring

Besides use in spectroscopic applications, Axetris IR Sources are ideally suited for compact IR gas detection modules using measurement techniques such as non-dispersive infrared spectroscopy (NDIR), photoacoustic infrared spectroscopy (PAS) and attenuated-total-reflectance FTIR spectroscopy (ATR).

Key Benefits

- True black body radiation (2 to 14 μm)
- High electrical input to optical output efficiency
- Low power consumption
- High emissivity
- Fast electrical modulation
- Long lifetime and stability

Credits

Axetris thanks the following development partners of MERTIS for their kind permission to reproduce the information in this document:
Institut für Planetologie, Westfälische Wilhelms-Universität Münster, Astro- und Feinwerktechnik Adlershof GmbH (Berlin), Deutsches Zentrum für Luft- und Raumfahrt (DLR e.V., Berlin-OS/PF)

About Axetris Infrared Sources

Axetris Infrared Sources are micro-machined, electrically modulated thermal infrared emitters. The unique design is based on a resistive heating element integrated onto a thin dielectric membrane, which is suspended on a micro-machined silicon structure.

Infrared Sources from Axetris are used in a number of gas detection applications in medical, industrial, environmental and automotive industries.

Emission Spectrum vs. Wavelength

Axetris Infrared Sources’ emission profiles closely resemble that of a black body, and typical emissivity values of 0.85 are achieved by the unique design.

Contact

Headquarters
Axetris AG, Switzerland
Schwarzenbergstrasse 10
CH-6056 Kaegiswil
Switzerland
phone +41 41 662 76 76
fax +41 41 662 75 25
axetris@axetris.com
www.axetris.com

USA
Leister Technologies LLC
1275 Hamilton Parkway
Itasca, IL 60143
USA
phone +1 844 293 8747
fax +1 630 760 1001
axetris.usa@axetris.com
www.axetris.com

China
Leister Technologies Ltd.
Building 11, 155 Yuanke Road
Shanghai 201 109
China
phone +86 21 6442 2398
fax +86 21 6442 2398
axetris@axetris.cn
www.axetris.cn

Japan
Leister Technologies KK
Shinyokohama Bousei Bldg 1F
3-20-12, Shinyokohama, Kohoku-ku
Yokohama 222-0033 / Japan
phone +81 45 447 36 37
fax +81 45 477 36 38
axetris@axetris.jp
www.axetris.jp

Swiss Made Quality. Axetris is an ISO 9001 certified enterprise.